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Abstract
We present a Lagrangian for the bilinear discrete KP (or Hirota–Miwa)
equation. Furthermore, we show that this Lagrangian can be extended to a
Lagrangian 3-form when embedded in a higher dimensional lattice, obeying a
closure relation. Thus we establish the multiform structure as proposed in Lobb
and Nijhoff (2009 J. Phys. A: Math. Theor. 42 454013) in a higher dimensional
case.

PACS numbers: 45.20.Jj, 02.30.Ik, 04.20.Fy
Mathematics Subject Classification: 39A99, 49N99, 35Q51

1. Introduction

In [8] the idea was put forward that lattice systems which are integrable in the sense of
multidimensional consistency [3, 13] should have a Lagrangian structure which reflects
this property. That is, rather than the Lagrangian being a scalar object (or equivalently a
volume form), it should be a discrete multiform from which, through the Euler–Lagrange
equations, copies of the relevant equation in all possible lattice directions can be derived.
These copies of the same equation, albeit with different parameters associated with different
lattice directions, coexist on an extended lattice in view of the multidimensional consistency,
and should consequently be viewed as parts of one single ‘integrable’ infinite-dimensional
system. Examples from a particular class of quadrilateral lattice systems in 1+1 dimensions
(those classified in [1]) were studied in [8], namely equations of the form

Q(u, ui, uj , uij ;αi, αj ) = 0, (1.1)

where u = u(ni, nj ) depends on two discrete variables ni and nj , shifts of u in the ni-direction
are denoted by ui (so that for example ui = u(ni + 1, nj )) and the αi are lattice parameters
associated with the ni-direction. Although actions for these equations were given in [1],
it was shown in [8] that all cases admit a special choice of three-point Lagrangians, which
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subsequently can be interpreted as Lagrangian 2-forms. This was based on the surprising
observation that such Lagrangians obey the following closure relation:

�iLjk + �jLki + �kLij = 0, (1.2)

which implies that they are closed 2-forms on a multidimensional lattice. Here the difference
operator �i acts on functions f of u = u(ni, nj , nk) by the formula �if (u) = f (ui)− f (u),
and on a function g of u and its shifts by the formula �ig(u, uj , uk) = g(ui, uij , uik) −
g(u, uj , uk). On the basis of relation (1.2) a new variational principle was proposed for
integrable (in the sense of multidimensional consistency) lattice equations which involves the
geometry of the space of independent variables.

Whereas in the previous paper the focus was on integrable lattice equations in 1+1
dimensions, here we want to study the case of three-dimensional integrable systems, the prime
example being the lattice Kadomtsev–Petviashvili (KP) system. Discrete equations of KP
type have been studied extensively since the early 1980s (cf for example [4, 11]), following
on from the famous ‘discrete analogue of a generalized Toda equation’ (DAGTE) introduced
by Hirota in [6] which is a bilinear form for the lattice KP equation3. Other related KP-type
lattice equations were introduced in [11]. The equation we will refer to as the bilinear discrete
KP equation, in order to distinguish it from equations that actually lead to the original KP
equation in a continuum limit, is taken in the following form:

Ajkτiτjk + Akiτj τki + Aij τkτij = 0. (1.4)

Here Aij = −Aji are constants, τ = τ(ni, nj , nk) is the dependent variable depending on three
discrete independent variables ni, nj and nk corresponding to lattice directions, and subscripts
of τ , e.g. as in τi , denote shifts in the ni-direction so that, for example, τi = τ(ni + 1, nj , nk)

and τj̄ = τ(ni, nj − 1, nk). The constants can be removed by a gauge transformation, but we
find it more instructive to retain them. Miwa gave the connection between the KP hierarchy
and Hirota’s difference equation in [10], showing how solutions to the KP hierarchy can be
transformed into solutions to (1.4); hence, it is often called the Hirota–Miwa equation.

The main results of this paper are twofold: first to give a Lagrangian for the bilinear
discrete KP system associated with (1.4) (in fact, whereas the continuous KP equation admits
an obvious Lagrangian structure, it has to our knowledge never been established for any
KP-type equation on the three-dimensional lattice), and second to establish the Lagrangian
multiform structure, in the sense of [8], based on a higher dimensional analogue of (1.2), and
show that the relevant Lagrangian obeys a four-dimensional closure relation.

2. Lagrangian structure

2.1. Scalar Lagrangian

It is a common feature of Lagrangians for equations of Korteweg–de Vries (KdV) and KP type
(already in the continuous case) that those equations emerge as Euler–Lagrange equations by
varying the action with respect to a dependent variable which obeys a potential (i.e. integrated)
version of the equation. Hence, the variational equation is typically a ‘derived form’ of the
equation obeyed by this canonical variable, with respect to which the action is minimized.
The same holds true in the case of a Lagrangian structure for the lattice KP system, where we

3 Hirota introduced his difference equation in a form equivalent to

ατiτı̄ + βτj τj̄ + γ τkτk̄ = 0, (1.3)

where the notation is explained in the text, and where α, β, γ are constants satisfying α + β + γ = 0.
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will use the τ -function as the canonical variable. Thus, by fixing three directions i, j and k,
we introduce the following Lagrangian:

L(τi, τj , τk, τij , τjk, τki;Aij , Ajk, Aki)

= ln

(
τkτij

τj τki

)
ln

(
−Akiτj

Ajkτi

)
− Li2

(
− Aij τkτij

Akiτj τki

)
=: Lijk, (2.1)

where Li2 denotes the dilogarithm function defined by

Li2(z) = −
∫ z

0

ln(1 − z)

z
dz. (2.2)

The Lagrangian (2.1) produces the following discrete Euler–Lagrange equation:

δL

δτ
=

{
ln

(
−Akiτjk̄τi + Aij ττij k̄

Ajkτik̄τj

)
+ ln

(
−Akiτj̄kτı̄ + Aij ττı̄j̄k

Ajkτı̄kτj

)

− ln

(
−Akiττij̄k + Aij τj̄kτi

Ajkτij̄ τk

)
− ln

(
−Akiττı̄j k̄ + Aij τjk̄τı̄

Ajkτı̄j τk̄

)}
1

τ

= 0, (2.3)

which is a consequence of (1.4) through the fact that it is a combination of four copies of the
equation shifted in appropriate lattice directions.

Consequently the following functional of the lattice fields τ(ni, nj , nk):

S[τ ] =
∑

ni ,nj ,nk

L(τi, τj , τk, τij , τjk, τki;Aij , Ajk, Aki) (2.4)

with L given by (2.1) can be considered to constitute an action for the lattice equation (2.3)
as a derived equation of the bilinear discrete KP equation. However, we want to go further
and take into account that the bilinear KP equation is part of a multidimensionally consistent
system of equations, as has been recognized in recent years, cf e.g. [2, 14, 16]. In order to
incorporate this multidimensionally consistent system of equations into a single Lagrangian
framework we will now proceed to define the Lagrangian multiform structure for the lattice
KP system.

2.2. Lagrangian 3-form

The first step is to introduce a Lagrangian 3-form Lijk, where i, j and k denote any three
distinct directions in a multidimensional lattice Λ, whose vertices are labelled by integer
vectors n = (ni)i∈I, where I is an arbitrary set of labels i, j and k taking values in I. The lattice
3-formLijk is based on the form of the Lagrangian (2.1), but we require it to be skew symmetric
(i.e. antisymmetric with respect to the swapping of any two indices) and we associate with
it an elementary oriented cube σijk spanned by unit vectors ei which are associated with the
corresponding lattice direction labelled by i in the multidimensional lattice Λ. This leads us
to define the following Lagrangian 3-form:

Lijk = 1
2

(
Lijk + Ljki + Lkij − Likj − Ljik − Lkji

)
,

which when written out explicitly and simplified is

Lijk = ln

(
τkτij

τj τki

)
ln

(
−Akiτj

Ajkτi

)
− Li2

(
− Aij τkτij

Akiτj τki

)

+ ln

(
τiτjk

τkτij

)
ln

(
−Aij τk

Akiτj

)
− Li2

(
−Ajkτiτjk

Aij τkτij

)

3
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+ ln

(
τj τki

τiτjk

)
ln

(
−Ajkτi

Aij τk

)
− Li2

(
− Akiτj τki

Ajkτiτjk

)

− 1

2

(
(ln(τij ))

2 + (ln(τjk))
2 + (ln(τki))

2 − (ln(τi))
2 − (ln(τj ))

2 − (ln(τk))
2

− ln(τij ) ln(τjk) − ln(τjk) ln(τki) − ln(τki) ln(τij ) + ln(τi) ln(τj )

+ ln(τj ) ln(τk) + ln(τk) ln(τi) + (ln(Aij ))
2 + (ln(Ajk))

2 + (ln(Aki))
2

− ln(Aij ) ln(Ajk) − ln(Ajk) ln(Aki) − ln(Aki) ln(Aij ) +
π2

2

)
, (2.5)

where the constant terms arise from dilogarithm identities which will be elucidated in the
proof below.

This Lagrangian is antisymmetric by construction. Considered as a usual scalar
Lagrangian defined in the three-dimensional sublattice of the directions i, j, k the Euler–
Lagrange equations of the corresponding action would yield an equation combining 12 shifted
copies of the original bilinear equation (1.4), namely

δLijk

δτ
=

{
ln

(
−Akiτjk̄τi + Aij ττij k̄

Ajkτik̄τj

)
+ ln

(
−Akiτj̄kτı̄ + Aij ττı̄j̄k

Ajkτı̄kτj

)

− ln

(
−Akiττij̄k + Aij τj̄kτi

Ajkτij̄ τk

)
− ln

(
−Akiττı̄j k̄ + Aij τjk̄τı̄

Ajkτı̄j τk̄

)

+ ln

(
−Aij τı̄kτj + Ajkττı̄jk

Akiτı̄j τk

)
+ ln

(
−Aij τik̄τj̄ + Ajkττij̄ k̄

Akiτij̄ τk̄

)

− ln

(
−Aij ττij k̄ + Ajkτik̄τj

Akiτj k̄τi

)
− ln

(
−Aij ττı̄j̄k + Ajkτı̄kτj̄

Akiτj̄kτı̄

)

+ ln

(
−Ajkτij̄ τk + Akiττij̄k

Aij τj̄kτi

)
+ ln

(
−Ajkτı̄j τk̄ + Akiττı̄j k̄

Aij τj k̄τı̄

)

− ln

(
−Ajkττı̄jk + Akiτı̄j τk

Aij τı̄kτj

)
− ln

(
−Ajkττij̄ k̄ + Akiτij̄ τk̄

Aij τik̄τj̄

)}
1

τ

= 0. (2.6)

Equation (2.6) is actually a 19-point equation existing on a cube as in figure 1. It comprises
the 12 shifted copies of (1.4) as illustrated in figure 2, where to each configuration of six points
on an elementary cube correspond two copies of (1.4).

The main observation which allows the establishment of the multiform structure is that
the Lagrangian 3-form defined in (2.5) is a closed form on the solution space of the original
bilinear equation (1.4). In fact we have the following closure property.

Proposition. The Lagrangian defined by (2.5) satisfies the following closure relation on
solutions to equation (1.4) when embedded in a four-dimensional lattice:

�lLijk − �iLjkl + �jLkli − �kLlij = 0, (2.7)

where the difference operator �i acts on functions f of τ = τ(ni, nj , nk, nl) by the
formula �if (τ) = f (τi) − f (τ), and on a function g of τ and its shifts by the formula
�ig(τ, τj , τk, τl) = g(τi, τij , τik, τil) − g(τ, τj , τk, τl).

4



J. Phys. A: Math. Theor. 42 (2009) 472002 Fast Track Communication

ni

nj

nk

Figure 1. The 19-point equation.

Figure 2. Copies of the six-point equation.

Proof. By explicit computation, the closure relation (2.7) holds on solutions of the original
equation, so we need to make use of (1.4) and its shifted versions. If we add in a fourth lattice
direction, we get the equations

Ajkτiτjk + Akiτj τki + Aij τkτij = 0, (2.8a)

Aklτj τkl − Ajlτkτjl + Ajkτlτjk = 0, (2.8b)

Aliτkτli − Akiτlτki + Aklτiτkl = 0, (2.8c)

5
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Aij τlτij + Ajlτiτjl + Aliτj τli = 0. (2.8d)

When shifted, equations (2.8a)–(2.8d) become

Ajkτliτjkl + Akiτjlτkli + Aij τklτlij = 0, (2.8e)

Aklτij τkli − Ajlτkiτlij + Ajkτliτijk = 0, (2.8f )

Aliτjkτlij − Akiτjlτijk + Aklτij τjkl = 0, (2.8g)

Aij τklτijk + Ajlτkiτjkl + Aliτjkτkli = 0. (2.8h)

We also need the following two key identities for the dilogarithm function:

Li2(x) + Li2(y) = Li2(xy) − Li2

(
x − xy

x − 1

)
− Li2

(
y − xy

y − 1

)
− 1

2

(
ln

(
x − 1

y − 1

))2

, (2.9a)

Li2(x) + Li2

(
1

x

)
= −1

2
(ln(−x))2 − π2

6
. (2.9b)

The latter equation holds for all x, a proof of which can be found in [7], where many dilogarithm
identities are collected. Equation (2.9a) is a combination of other such identities from [7],
and it can be proved by simple differentiation. It is valid up to imaginary terms which can
be chosen to cancel out in the course of the closure relation computation. We will split the
computation into two parts considering the dilogarithm terms separately. Let

� = �lLijk − �iLjkl + �jLkli − �kLlij (2.10)

with Lijk given by (2.5) and let � = �1 + �2, where �1 is the part of � omitting dilogarithm
terms from the Lagrangian, and �2 consists of only the dilogarithm terms. We have

�1 = 1

2
((ln(τijk)

2 − (ln(τjkl))
2 + (ln(τkli))

2 − (ln(τlij ))
2

+ (ln(τi))
2 − (ln(τj ))

2 + (ln(τk))
2 − (ln(τl))

2)

− ln(τijk) ln(τkli) + ln(τjkl) ln(τlij ) − ln(τi) ln(τk) + ln(τj ) ln(τl)

+ ln(τijk) ln

(
−AijAjkτklτli

AjlAkiτjlτki

)
+ ln(τjkl) ln

(
AjlAkiτjlτki

AjkAklτij τli

)

+ ln(τkli) ln

(
−AklAliτij τjk

AjlAkiτjlτki

)
+ ln(τlij ) ln

(
AjlAkiτjlτki

AijAliτjkτkl

)

+ ln(τi) ln

(
AjkAklτjkτkl

AjlAkiτjlτki

)
+ ln(τj ) ln

(
−AjlAkiτjlτki

AklAliτklτli

)

+ ln(τk) ln

(
AijAliτij τli

AjlAkiτjlτki

)
+ ln(τl) ln

(
− AjlAkiτjlτki

AijAjkτij τjk

)

+ ln(τij ) ln

(
− Ali

Ajk

)
+ ln(τjk) ln

(
−Akl

Aij

)
+ ln(τkl) ln

(
−Ajk

Ali

)

+ ln(τli) ln

(
−Aij

Akl

)
+ ln

(
τjl

τki

)
ln

(
AijAjkAklAliτij τjkτklτli

A2
j lA

2
kiτ

2
j lτ

2
ki

)
. (2.11)

6
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Now we consider the dilogarithm terms. The dilogarithm terms from � are

Γ2 = − Li2

(
−Aijτklτlij
Akiτjlτkli

)
+ Li2

(
−Aijτkτij
Akiτjτki

)
− Li2

(
Aklτijτjkl
Akiτjlτijk

)

+ Li2

(
Ajkτliτijk
Ajlτkiτlij

)
− Li2

(
Ajkτlτjk
Ajlτkτjl

)
+ Li2

(
Aklτiτkl
Akiτlτki

)

+ Li2

(
−Aliτjkτkli
Ajlτkiτjkl

)
− Li2

(
−Aliτjτli
Ajlτiτjl

)
+ Li2

(
−Aklτijτkli
Ajkτliτijk

)

− Li2

(
−Ajkτliτjkl
Aijτklτlij

)
+ Li2

(
−Ajkτiτjk
Aijτkτij

)
− Li2

(
−Aklτjτkl
Ajkτlτjk

)

− Li2

(
−Aliτjkτlij
Aklτijτjkl

)
+ Li2

(
−Aliτkτli
Aklτiτkl

)
− Li2

(
−Akiτjlτkli
Ajkτliτjkl

)

+ Li2

(
−Aijτklτijk
Aliτjkτkli

)
− Li2

(
−Aijτlτij
Aliτjτli

)
+ Li2

(
−Akiτjτki
Ajkτiτjk

)

+ Li2

(
Ajlτkiτlij
Aklτijτkli

)
− Li2

(
Ajlτkτjl
Aklτjτkl

)
+ Li2

(
−Ajlτkiτjkl
Aijτklτijk

)

− Li2

(
Akiτjlτijk
Aliτjkτlij

)
+ Li2

(
Akiτlτki
Aliτkτli

)
− Li2

(
−Ajlτiτjl
Aijτlτij

)
(2.12)

Using (2.9b) on the terms in the dotted boxes, followed by (2.9a) on the terms in the solid
boxes gives a large expression which we reproduce in the appendix and show to be equal to
−�1, verifying the closure relation. �

The establishment of the closure property enables us to propose a novel variational
principle for the multidimensionally consistent system of bilinear KP equations, along the
same line as in [8]. Choosing a three-dimensional hypersurface σ within a multidimensional
lattice of dimension higher than three, consisting of a connected configuration of elementary
cubes σijk , we can define an action S on this hypersurface by summing the contributions Lijk

from each of the cubes as follows:

S[τ ; σ ] =
∑

σijk∈σ

Lijk, (2.13)

taking into consideration the orientation of each elementary cube contributing to the surface.
The antisymmetry ofLijk guarantees that there is no ambiguity in how each discrete Lagrangian
3-form will contribute to the action4. Furthermore, the closure relation (2.7) allows us to
impose the independence of the action on local variations of the surface away from any
boundary that the surface σ may possess. Thus, whilst keeping the boundary fixed we may
locally deform σ in any way we choose, allowing us in particular to render it locally flat away
from the boundary, such that we can specify a three-dimensional hypersurface described in
terms of three local coordinates ni, nj and nk . There we can then apply the usual variational
principle, taking the variational derivative with respect to τ , leading to the Euler–Lagrange

4 Note that we do not use the abstract notation of difference forms as proposed in [9], as we prefer to work with
the explicit expressions for the integrated forms as described here, which allows for a direct verification of the main
result.

7
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equations (2.6). These equations of the motion are a consequence of the Hirota–Miwa
equation (1.4), as are the closure relations that guarantee the surface independence of the
action under local deformations. This interlinked scheme of variations with respect to the
dependent variables as well as to the geometry of the independent variables is what constitutes
the Lagrangian multiform structure of the lattice KP system.

3. Discussion

We have shown that the ideas of [8] for two-dimensional integrable (in the sense of
multidimensional consistency) equations are also applicable to the three-dimensional example
of the bilinear discrete KP equation. There are several remarks we would like to make at this
point.

First, one has to qualify what it means for a Lagrangian to be associated with a given
equation, since as we have noted earlier the Euler–Lagrange equations rather than yielding
the original bilinear KP equation only yield a derived equation comprising a combination of
various copies of the original equation. Nevertheless we have taken the point of view that
since the canonical variable is the τ -function, we consider this Lagrangian structure to be
associated with the bilinear KP equation.

Second, the closure relation which is central to the Lagrangian multiform structure relies
on the bilinear KP equation rather than on the Euler–Lagrange equations. It is not clear at
this stage to what extent the closure property remains to be verified on all solutions of the
Euler–Lagrange equations or only on a subvariety of solutions that obey the multidimensional
systems of bilinear equations.

Third, we consider the Lagrangian multiform structure as a hallmark of multidimensional
consistency on the level of the variational principle. As such, it is as much a principle
that selects ‘admissible Lagrangians’ as well as field configurations obeying the variational
equations. It would be a challenge to see whether this principle can be used as a criterion to
classify the admissible Lagrangians to which it can be applied, which then necessarily would
coincide with the integrable cases.

As far as KP-type systems are concerned, in some recent works in combinatorics, three-
dimensional six-point recurrence schemes have been studied from the point of view of the
geometry of the octahedral lattice, cf e.g. [5, 15]. A classification of multidimensionally
consistent six-point equations has recently been done in [2], but this does not seem to yield
any novel lattice equations (e.g. in comparison with the list in [12]). It would be of interest to
see whether Lagrangian multiform structures can be established for all those equations, and
whether these structures can be adapted to the octahedral lattice picture. Alternatively one can
consider three-dimensional lattice equations of BKP type, i.e. equations of the form

Q(τ, τi, τj , τk, τij , τjk, τki , τijk) = 0, (3.1)

but so far Lagrangian structures for such equations remain to be established.
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Appendix. Closure relation computation

After using the dilogarithm identities on the boxed terms of equation (2.12) as described
above, we obtain the following expression. Here we have also made use of the equations
(2.8a)–(2.8h).

Γ2 = + Li2
τkτijτjlτkli
τjτklτkiτlij

− Li2
τiτjkτjlτkli
τjτliτkiτjkl

− Li2
τkτijτliτjkl
τiτjkτklτlij

+ Li2

(
τkτliτjlτijk
τlτjkτkiτlij

)
− Li2

(
τjτklτliτijk
τlτijτjkτkli

)
− Li2

(
τkτijτjlτkli
τjτklτkiτlij

)

+ Li2

(
τiτklτjlτijk
τlτijτkiτjkl

)
− Li2

(
τkτliτjlτijk
τlτjkτkiτlij

)
− Li2

(
τiτjkτklτlij
τkτijτliτjkl

)

+ Li2

(
τiτjkτjlτkli
τjτliτkiτjkl

)
− Li2

(
τlτijτjkτkli
τjτklτliτijk

)
− Li2

(
τiτklτjlτijk
τlτijτkiτjkl

)

+ Li2

(
τiτjkτklτlij
τkτijτliτjkl

)
− Li2

(
τjτklτkiτlij
τkτijτjlτkli

)
− Li2

(
τiτjkτjlτkli
τjτliτkiτjkl

)

+ Li2

(
τlτijτjkτkli
τjτklτliτijk

)
− Li2

(
τkτijτjlτkli
τjτklτkiτlij

)
− Li2

(
τlτjkτkiτlij
τkτliτjlτijk

)

+ Li2

(
τkτijτliτjkl
τiτjkτklτlij

)
− Li2

(
τlτijτkiτjkl
τiτklτjlτijk

)
− Li2

(
τkτliτjlτijk
τlτjkτkiτlij

)

+ Li2

(
τjτklτliτijk
τlτijτjkτkli

)
− Li2

(
τiτklτjlτijk
τlτijτkiτjkl

)
− Li2

(
τjτliτkiτjkl
τiτjkτjlτkli

)

+ Li2

(
τjτliτkiτjkl
τiτjkτjlτkli

)
− Li2

(
τkτijτliτjkl
τiτjkτklτlij

)
− Li2

(
τjτklτkiτlij
τkτijτjlτkli

)

+ Li2

(
τjτklτkiτlij
τkτijτjlτkli

)
− Li2

(
τlτjkτkiτlij
τkτliτjlτijk

)
− Li2

(
τjτklτliτijk
τlτijτjkτkli

)

+ Li2

(
τlτjkτkiτlij
τkτliτjlτijk

)
− Li2

(
τiτjkτklτlij
τkτijτliτjkl

)
− Li2

(
τlτijτkiτjkl
τiτklτjlτijk

)

+ Li2

(
τlτijτkiτjkl
τiτklτjlτijk

)
− Li2

(
τjτliτkiτjkl
τiτjkτjlτkli

)
− Li2

(
τlτijτjkτkli
τjτklτliτijk

)

+
1
2

(
ln

(
Akiτjlτkli
Aijτklτlij

))2

+
1
2

(
ln

(
−Ajlτkτjl
Ajkτlτjk

))2

+
1
2

(
ln

(
−Akiτjlτijk
Aklτijτjkl

))2

+
1
2

(
ln

(
Ajlτiτjl
Aliτjτli

))2

+
1
2

(
ln

(
Aijτklτlij
Ajkτliτjkl

))2

+
1
2

(
ln

(
Ajkτlτjk
Aklτjτkl

))2

+
1
2

(
ln

(
Aklτijτjkl
Aliτjkτlij

))2

+
1
2

(
ln

(
Aliτjτli
Aijτlτij

))2

+
1
2

(
ln

(
Ajkτliτjkl
Akiτjlτkli

))2

+
1
2

(
ln

(
−Aklτjτkl
Ajlτkτjl

))2

+
1
2

(
ln

(
−Aliτjkτlij
Akiτjlτijk

))2

+
1
2

(
ln

(
Aijτlτij
Ajlτiτjl

))2

− 1
2

(
ln

(
Akiτjτliτkiτjkl
Aijτiτjkτklτlij

))2

− 1
2

(
ln

(
−Ajkτlτijτjkτkli
Ajlτjτklτkiτlij

))2

− 1
2

(
ln

(
−Akiτlτjkτkiτlij
Aklτkτijτliτjkl

))2

− 1
2

(
ln

(
Aliτjτklτliτijk
Ajlτlτijτkiτjkl

))2
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− 1
2

(
ln

(
Aklτiτklτjlτijk
Aliτlτjkτkiτlij

))2

− 1
2

(
ln

(
Aijτlτijτkiτjkl
Aliτiτjkτjlτkli

))2

− 1
2

(
ln

(
Ajkτiτjkτklτlij
Akiτkτijτjlτkli

))2

− 1
2

(
ln

(
−Ajlτkτliτjlτijk
Aklτlτijτjkτkli

))2

− 1
2

(
ln

(
−Aliτkτijτliτjkl
Akiτiτklτjlτijk

))2

− 1
2

(
ln

(
Ajlτiτjkτjlτkli
Aijτjτklτliτijk

))2

+ 2π2

− 1
2

ln
Aijτkτijτjlτkli
Ajkτjτliτkiτjkl

2

− 1
2

ln
Aklτjτklτkiτlij
Ajkτkτliτjlτijk

2

(A.1)

Using (2.9b) on all the terms in the dotted boxes, all the dilogarithm terms cancel out
leaving only these logarithm terms

�2 = +
1

2

(
ln

(
Akiτjlτkli

Aij τklτlij

))2

+
1

2

(
ln

(
− Ajlτkτjl

Ajkτlτjk

))2

+
1

2

(
ln

(
−Akiτjlτijk

Aklτij τjkl

))2

+
1

2

(
ln

(
Ajlτiτjl

Aliτj τli

))2

+
1

2

(
ln

(
Aij τklτlij

Ajkτliτjkl

))2

+
1

2

(
ln

(
Ajkτlτjk

Aklτj τkl

))2

+
1

2

(
ln

(
Aklτij τjkl

Aliτjkτlij

))2

+
1

2

(
ln

(
Aliτj τli

Aij τlτij

))2

+
1

2

(
ln

(
Ajkτliτjkl

Akiτjlτkli

))2

+
1

2

(
ln

(
−Aklτj τkl

Ajlτkτjl

))2

+
1

2

(
ln

(
− Aliτjkτlij

Akiτjlτijk

))2

+
1

2

(
ln

(
Aij τlτij

Ajlτiτjl

))2

− 1

2

(
ln

(
Akiτj τliτkiτjkl

Aij τiτjkτklτlij

))2

− 1

2

(
ln

(
−Ajkτlτij τjkτkli

Ajlτj τklτkiτlij

))2

− 1

2

(
ln

(
−Akiτlτjkτkiτlij

Aklτkτij τliτjkl

))2

− 1

2

(
ln

(
Aliτj τklτliτijk

Ajlτlτij τkiτjkl

))2

− 1

2

(
ln

(
Aij τkτij τjlτkli

Ajkτj τliτkiτjkl

))2

− 1

2

(
ln

(
Aklτj τklτkiτlij

Ajkτkτliτjlτijk

))2

− 1

2

(
ln

(
Aklτiτklτjlτijk

Aliτlτjkτkiτlij

))2

− 1

2

(
ln

(
Aij τlτij τkiτjkl

Aliτiτjkτjlτkli

))2

− 1

2

(
ln

(
Ajkτiτjkτklτlij

Akiτkτij τjlτkli

))2

− 1

2

(
ln

(
−Ajlτkτliτjlτijk

Aklτlτij τjkτkli

))2

− 1

2

(
ln

(
− Aliτkτij τliτjkl

Akiτiτklτjlτijk

))2

− 1

2

(
ln

(
Ajlτiτjkτjlτkli

Aij τj τklτliτijk

))2

+
1

2

(
ln

(
−τkτij τliτjkl

τiτjkτklτlij

))2

+
1

2

(
ln

(
−τj τklτliτijk

τlτij τjkτkli

))2

+
1

2

(
ln

(
−τj τklτkiτlij

τkτij τjlτkli

))2

+
1

2

(
ln

(
−τlτjkτkiτlij

τkτliτjlτijk

))2

+
1

2

(
ln

(
−τlτij τkiτjkl

τiτklτjlτijk

))2

+
1

2

(
ln

(
−τiτjkτjlτkli

τj τliτkiτjkl

))2

+ 3π2. (A.2)
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This simplifies to

�2 = 1

2

(−(ln(τijk))
2 + (ln(τjkl))

2 − (ln(τkli))
2 + (ln(τlij ))

2

− (ln(τi))
2 + (ln(τj ))

2 − (ln(τk))
2 + (ln(τl))

2
)

+ ln(τijk) ln(τkli) − ln(τjkl) ln(τlij ) + ln(τi) ln(τk) − ln(τj ) ln(τl)

+ ln(τijk) ln

(
−AjlAkiτjlτki

AijAjkτklτli

)
+ ln(τjkl) ln

(
AjkAklτij τli

AjlAkiτjlτki

)

+ ln(τkli) ln

(
−AjlAkiτjlτki

AklAliτij τjk

)
+ ln(τlij ) ln

(
AijAliτjkτkl

AjlAkiτjlτki

)

+ ln(τi) ln

(
AjlAkiτjlτki

AjkAklτjkτkl

)
+ ln(τj ) ln

(
− AklAliτklτli

AjlAkiτjlτki

)

+ ln(τk) ln

(
AjlAkiτjlτki

AijAliτij τli

)
+ ln(τl) ln

(
−AijAjkτij τjk

AjlAkiτjlτki

)

+ ln(τij ) ln

(
−Ajk

Ali

)
+ ln(τjk) ln

(
−Aij

Akl

)
+ ln(τkl) ln

(
− Ali

Ajk

)

+ ln(τli) ln

(
−Akl

Aij

)
+ ln

(
τki

τjl

)
ln

(
AijAjkAklAliτij τjkτklτli

A2
j lA

2
kiτ

2
j lτ

2
ki

)
. (A.3)

The reader can easily check that adding (A.3) to �1 from (2.11) gives zero, verifying the
closure relation.
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